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We present an analysis leading to a conjecture on the exact location of the multicritical
point in the phase diagram of spin glasses in finite dimensions. The conjecture, in
satisfactory agreement with a number of numerical results, was previously derived
using an ansatz emerging from duality and the replica method. In the present paper we
carefully examine the ansatz and reduce it to a hypothesis on analyticity of a function
appearing in the duality relation. Thus the problem is now clearer than before from a
mathematical point of view: The ansatz, somewhat arbitrarily introduced previously,
has now been shown to be closely related to the analyticity of a well-defined function.
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1. INTRODUCTION

To establish reliable analytical theories of spin glasses has been one of
the most challenging problems in statistical physics for years. The problem was
solved for the mean-field model(1−4). Much less is known analytically for finite-
dimensional spin glasses, for which approximate methods including numerical
simulations and phenomenological theories (5) have been the main tools of inves-
tigation in addition to a limited set of rigorous results and exact solutions (6,7).

Our main interest in the present contribution does not lie directly in the issue
of the properties of the spin glass phase. We instead will concentrate ourselves on
the precise (and possibly exact) determination of the structure of phase diagram
of finite-dimensional spin glasses. This problem is of practical importance for
numerical studies since exact values of transition points greatly facilitate reliable
estimates of critical exponents in finite-size scaling.

More precisely, recent developments(8−12) to derive a conjecture on the exact
location of the multicritical point in the phase diagram will be analyzed from a
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different view point. The conjecture was derived using the replica method, gauge
symmetry and a duality relation. In addition it was necessary to introduce an ansatz
to identify the location of a singularity of the free energy. The resulting conjecture
for the transition point (multicritical point) is nevertheless in satisfactory agree-
ment with a number of numerical results, which renders a strong support to the
validity of our prescription. In the present paper we present a more systematic
analysis leading to the ansatz, thus reducing the problem to that of the analytic-
ity proof of a function related to duality. The ansatz was introduced somewhat
arbitrarily previously. The discussions in the present paper make it clear that the
ansatz is closely related to the analyticity of a well-defined function, which paves
a path toward the formal proof of the conjecture.

2. DUALITY RELATION FOR THE REPLICATED SYSTEM

For simplicity, let us consider the ±J Ising model on the square lattice. It is
possible to apply the same line of argument as presented below to other systems
(non-Ising models and/or other lattices) as will be mentioned in the final section.
The Hamiltonian is

H = −J
∑

〈i j〉
τi j Si S j , (1)

where τi j = ±1 is a quenched random variable with asymmetric distribution and
J > 0. Periodic boundary conditions are imposed. We accept the replica method
in this paper and do not strive to rigorously justify the validity of taking the limit
n → 0 in the end, where n is the number of replicas.

The n-replicated partition function after configurational average is a function
of edge Boltzmann factors:

[Zn] ≡ Zn(x0(K , K p), x1(K , K p), · · · , xn(K , K p)). (2)

Here the square brackets denote the configurational average, K stands for β J =
J/kB T , and K p is a function of p (the probability that τi j is 1) defined through
e−2K p = (1 − p)/p. The kth edge Boltzmann factor xk(K , K p) (k = 0, 1, · · · , n)
represents the configuration-averaged Boltzmann factor for interacting spins with
k antiparallel spin pairs among n nearest-neighbor pairs for a bond (edge) as
illustrated in Fig. 1,

xk(K , K p) = pe(n−2k)K + (1 − p)e−(n−2k)K . (3)

The expression on the right-hand side of Eq. (2) emphasizes the fact that the
system properties are uniquely determined by the values of edge Boltzmann factors
because the interactions (or equivalently, the edge Boltzmann factors) do not
depend on the bond index 〈i j〉 after the configurational average.
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Fig. 1. The edge Boltzmann factor xk (K , K p) represents the weight for k antiparallel spin pairs among
n nearest-neighboring pairs. The case of k = 1, n = 4 is shown here.

The formulation of duality transformation developed by Wu and Wang(13)

can be applied to the function Zn of Eq. (2) to derive a dual partition function on
the dual square lattice with dual edge Boltzmann factors. The result is, up to a
trivial constant (9),

Zn(x0, x1, · · · , xn) = Zn(x∗
0 , x∗

1 , · · · , x∗
n ). (4)

The dual Boltzmann factors are discrete multiple Fourier transforms of the
original Boltzmann factors (which are simple combinations of plus and minus of
the original Boltzmann factors in the case of Ising spins):

2n/2x∗
m =

n∑

k=0

Dk
m xk, (5)

where the Dk
m are the coefficients of the expansion of (1 − t)m(1 + t)n−m :

(1 − t)m(1 + t)n−m =
n∑

k=0

Dk
m tk, (6)

or explicitly,

Dk
m =

k∑

l=0

(−1)l

(
m

l

)(
n − m

k − l

)
. (7)

For example, in the case of n = 2, the dual Boltzmann factors are given as

2 x∗
0 = (x0 + x1) + (x1 + x2) = x0 + 2x1 + x2

2 x∗
1 = (x0 − x1) + (x1 − x2) = x0 − x2

2 x∗
2 = (x0 − x1) − (x1 − x2) = x0 − 2x1 + x2.

(8)

It will be useful to measure the energy from the all-parallel spin configuration
(k = 0) and, correspondingly, factor out the principal Boltzmann factors, x0 (left
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hand side) and x∗
0 (right hand side), from both sides of Eq. (4). Since the partition

function is a homogeneous multinomial of edge Boltzmann factors (x0, x1, · · · , xn)
of order NB (the number of bonds), the duality relation (4) can then be rewritten
as

(x0)NB Z̃n(u1, u2, · · · , un) = (x∗
0 )NB Z̃n(u∗

1, u∗
2, · · · , u∗

n), (9)

using the normalized edge Boltzmann factors uk and u∗
k (k = 1, 2, · · · , n) defined

by uk = xk/x0 and u∗
k = x∗

k /x∗
0 .

The discussions so far have already been given in references(9−11). In those
papers we went on to try to identify the multicritical point by the fixed-point
condition of the principal Boltzmann factor, x0(K , K p) = x∗

0 (K , K p), combined
with the Nishimori line (NL) condition K = K p

(6). The reason for the latter
choice is that the multicritical point is expected to lie on the NL(14). In this
way an ansatz was made at this stage that the multicritical point is given by the
relation x0(K , K ) = x∗

0 (K , K ). The resulting expression for the location of the
multicritical point was confirmed to be exact in the cases of n = 1, 2 and n → ∞.
Extrapolation to the quenched limit n → 0 gave results in agreement with a number
of independent numerical estimates as listed in Table 1. However, it was difficult
to understand the mathematical origin of the somewhat arbitrary-looking ansatz.

We develop an argument in the next section to justify the above-mentioned
relation x0(K , K ) = x∗

0 (K , K ) as the fixed point condition of duality relation for
the replicated ±J Ising model on the NL.

3. SELF-DUALITY

The duality relation (9) applies to an arbitrary set of parameter values (K , K p)
or an arbitrary point in the phase diagram (Fig. 2). However, we restrict ourselves
to the NL (K = K p) to investigate the location of the multicritical point. Then
Eq. (9) is expressed as

(x0(K ))NB Z̃n(u1(K ), u2(K ), · · · , un(K ))

= (x∗
0 (K ))NB Z̃n(u∗

1(K ), u∗
2(K ), · · · , u∗

n(K )) (10)

since x0, u1, · · · , un and x∗
0 , u∗

1, · · · , u∗
n are now functions of a single variable K .

It is difficult to apply directly the usual duality argument (identification of a
fixed point with the transition point assuming uniqueness of the latter) to Eq. (10).
The reason is that Z̃n is a multi-variable function: The two trajectories representing

L(K )
def= (u1(K ), u2(K ), · · · , un(K )) and L∗(K )

def= (u∗
1(K ), u∗

2(K ), · · · , u∗
n(K ))

do not in general coincide as depicted in Fig. 3. In other words, there is no
fixed point in the conventional sense for the present system.

In spite of this difficulty of the apparent absence of a fixed point, we now
show that it is still possible to devise a map which renders the present replicated
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Table I. Location of the multicritical point by recent numerical studies and our con-

jecture. SQ stands for the square lattice, and TR/HEX for the triangular/hexagonal

lattices, respectively

Model Numerical estimates Reference Our conjecture Reference

SQ Ising 0.8900(5) (15) 0.889972 (8,9)

0.8894(9) (16)

0.8907(2) (17)

0.8906(2) (18)

0.8905(5) (19)

SQ Gaussian 1.00(2) (20) 1.021770 (8,9)

SQ 3-Potts 0.079-0.080 (21) 0.079731 (8,9)

4d gauge (RPGM) 0.890(2) (22) 0.889972 (10)

TR 0.8355(5) (15) 0.835806 (12)

HEX 0.9325(5) (15) 0.932704 (12)

3d Ising (RBIM) 0.7673(3)(= pc1) (23) –
3d gauge (RPGM) 0.967(4)(= pc2) (24) –

RBIM+RPGM H (pc1) + H (pc2) = 0.99(2) H (pc1) + H (pc2) = 1 (11)

Hierarchical 1 (H1) 0.8265(= pc3) (25) –
Dual of H1 (dH1) 0.93380(= pc4) (25) –

H1+dH1 H (pc3) + H (pc4) = 1.0172 H (pc3) + H (pc4) = 1 (11)

Hierarchical 2 (H2) 0.8149(= pc5) (25) –
Dual of H2 (dH2) 0.94872(= pc6) (25) –

H2+dH2 H (pc5) + H (pc6) = 0.9829 H (pc5) + H (pc6) = 1 (11)

Hierarchical 3 (H3) 0.7527(= pc7) (25) –
Dual of H3 (dH3) 0.97204(= pc8) (25) –

H3+dH3 H (pc7) + H (pc8) = 0.9911 H (pc7) + H (pc8) = 1 (11)

Hierarchical 4 0.8902(4) (26) 0.889972 (9,10)

Note. RBIM stands for the random-bond Ising model and RPGM is for the random-plaquette gauge
model. See reference (25) for the explicit definition of three types of hierarchical lattices (H1, H2,
H3) and their duals. Hierarchical 4 is a self-dual lattice, for which the analysis in Ref. 9, 10 applies
directly (though not stated explicitly in these references). The values are for pc of the ±J model
except for the Gaussian randomness on the square lattice for which the values 1.00(2) and 1.021770
are for J0c/J . Spin variables are Ising excepting the three-state Potts model as indicated. The symbol
H (p) is for the binary entropy H (p) = −p log2 p − (1 − p) log2(1 − p).

system self-dual with a fixed point. To derive such a result, it is useful to note a
few properties of the quantities appearing in Eq. (10).

Lemma 1. The normalized Boltzmann factor uk(K ) is a monotone decreas-
ing function of K from uk(0) = 1 to limK→∞ uk(K ) = 0. The dual u∗

k (K ) is
a monotone increasing function from u∗

k (0) = 0 to limK→∞ u∗
k (K ) = 1. Here

k ∈ {1, 2, · · · n} and n ∈ N.
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Fig. 2. A typical phase diagram of the ±J Ising model. Shown dash-dotted is the NL. Note that the
spin glass phase is believed not to exist in two dimensions. The multicritical point is denoted as MCP.

Proof. From the definition (3) of xk and the NL condition K = K p (i.e.
e−2K = (1 − p)/p), it is straightforward to verify that

uk(K ) = e(n+1−2k)K + e−(n+1−2k)K

e(n+1)K + e−(n+1)K
, (11)

from which the result for uk(K ) follows. The dual are shown to satisfy (9)

u∗
k (K ) =

{
(tanh K )k+1 (k odd)

(tanh K )k (k even)
, (12)

which leads to the statement on u∗
k .

Lemma 2. The normalized partition function Z̃n(u1, · · · , un) is a monotone
increasing continuous function of all of its arguments u1, · · · , un with the limiting
values in the hypercube [0, 1]n Z̃n(0, · · · , 0) = 2 and Z̃n(1, · · · , 1) = 2nN , where
N is the number of sites.

Fig. 3. Trajectories of the points L(K ) = (u1(K ), u2(K ), · · · , un(K )) and L∗(K ) =
(u∗

1(K ), u∗
2(K ), · · · , u∗

n(K )), projected onto the (u1, u2) plane. The arrows indicate the sense
of motion of L(K ) and L∗(K ) as K changes from 0 to ∞.
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Proof. Since the normalized partition function is a multinomial of normalized
edge Boltzmann factors u1, · · · , un with positive coefficients, the first half of the
above statement is trivial. To check the second half, we note that u1 = · · · = un = 0
corresponds to the case where no antiparallel spin pairs are allowed in any replica
at any bond. The only allowed spin configuration is the all-parallel (i.e. perfectly
ferromagnetic) one, for which we have set the energy 0 (or the edge Boltzmann
factor u0 = 1) since the energy is measured from such a state by dividing xk

by x0. Taking into account the global inversion degeneracy, we conclude that
Z̃n(0, · · · , 0) is equal to 2u0 = 2.

Similarly, when u1 = · · · = un = 1 (corresponding to the high-temperature
limit), all spin configurations show up with equal probability. Therefore the nor-
malized partition function just counts the number of possible spin configurations,
yielding 2nN .

Now we are ready to step toward the main theorems.

Theorem 1. There exists a monotone decreasing function d(K ) with
limK→0 d(K ) → ∞ and limK→∞d(K ) = 0 by which the value of Z̃ at
(u∗

1(K ), · · · , u∗
n(K )) becomes equal to the value at (u1(d(K )), · · · , un(d(K ))),

Z̃n(u∗
1(K ), · · · , u∗

n(K )) = Z̃n(u1(d(K )), · · · , un(d(K ))). (13)

Proof. According to Lemma 1, the curve L(K ) = (u1(K ), · · · , un(K )) starts
from the point (1, · · · , 1) and ends at (0, · · · , 0) as K increases from 0 to ∞. Sim-
ilarly, the curve L∗(K ) = (u∗

1(K ), · · · , u∗
n(K )) starts from (0, · · · , 0) and ends

at (1, · · · , 1). Thus Z̃n(u1(K ), · · · , un(K ))
def= U(K ) is continuous and mono-

tone decreasing from U(0) = 2nN to limK→∞ U(K ) = 2 by Lemma 2. Similarly,

Z̃n(u∗
1(K ), · · · , u∗

n(K ))
def= V(K ) is continuous and monotone increasing from

V(0) = 2 to limK→∞ V(K ) = 2nN . Consequently there exists a monotone de-
creasing function d(K ) (satisfying limK→0 d(K ) → ∞ and limK→∞d(K ) = 0)
that relates the values of U and V such that U(d(K )) = V(K ).

Corollary 1. The normalized partition function satisfies the duality relation

(x0(K ))NB Z̃n(u1(K ), · · · , un(K )) = (x∗
0 (K ))NB Z̃n(u1(d(K )), · · · , un(d(K ))),

(14)
where d(K ) is the monotone decreasing function shown to exist in Theorem 1.

Proof. Immediate from Eq. (10) and Theorem 1.

Theorem 2. The normalized partition function is self-dual with a fixed point K0

given by K0 = d(K0), which is equivalent to x0(K0) = x∗
0 (K0).
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Proof. The first half of the statement is immediate from Corollary 1. The
second half comes from the observation that the values of Z̃n on both sides of Eq.
(14) become identical at the fixed point K0 = d(K0), thus making the prefactors,
x0(K ) and x∗

0 (K ), equal to each other.

Corollary 2. Assume that d(K ) has no singularity for K ∈ [0,∞). If the free
energy per site of the replicated system has a unique singularity at some K = Kc

in the thermodynamic limit, then Kc is equal to K0 of Theorem 2.

Note. As long as d(K ) is analytic, the above statement is the same one as the
usual duality argument for the ferromagnetic Ising model on the square lattice, in
which d(K ) is −(1/2) log tanh K .

However, if d(K ) happens to be singular at K1 for example, this singularity
would be reflected in the singularity of the free energy (away from the fixed point
K0) through the relation (14): The free energy per spin derived from the right-hand
side will be singular at K1 reflecting the singularity of d(K ) there. This causes a
singularity of the free energy derived from the left-hand side at K1.

We have been unable to prove analyticity of d(K ). This is one of the reasons
that the following two statements are conjectures. The other reasons include the
validity of the replica method and the absence of a formal proof for the existence
of the multicritical point on the NL.

Conjecture 1. (9,8) The exact location of the multicritical point for the n-replicated
±J Ising model on the square lattice is given by the relation x0 = x∗

0 with K = K p,
i.e.

e(n+1)Kc + e−(n+1)Kc = 2−n/2(eKc + e−Kc )n. (15)
Note. The explicit expressions of x0 and x∗

0 are given in Eqs. (3) and (5). See
also ref.(9−11).

Conjecture 2. (9,8) The exact location of the multicritical point for the ±J Ising
model on the square lattice with quenched randomness is given by the formula

−pc log pc − (1 − pc) log(1 − pc) = log 2

2
. (16)

Proof. The limit n → 0 of Eq. (15) and the NL condition K = K P yields the
above formula.

4. CONCLUDING REMARKS

The main physical conclusions, Conjecture 1 and Conjecture 2, are not new.
The significance of the present paper is that we have derived the ansatz to identify
the multicritical point, x0(K ) = x∗

0 (K ), from the assumption of analyticity of the
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function d(K ), thus hopefully coming a little closer to the formal proof of the
conjecture.

In this paper we have limited ourselves to the ±J Ising model on the square
lattice for simplicity. It is straightforward to apply the same type of argument to
other lattices and other models. For example, models on the square lattice (such
as the Gaussian Ising spin glass and the random chiral Potts model) can be treated
very similarly: The differences lie only in the explicit expressions of xk as given
in section 2.9 of ref. (9) and section 4.1 of ref. (11). Also, the duality structure
of the four-dimensional random plaquette gauge model is exactly the same as
the ±J Ising model on the square lattice (10), and therefore the present analysis
applies without change. In the case of mutually dual pairs of lattices, such as the
triangular and hexagonal lattices or the three-dimensional ±J Ising model and the
three-dimensional random-plaquette gauge model, a simple generalization suffices
that refers to the composite duality relation of the two systems, x0(K1)x0(K2) =
x∗

0 (K2)x∗
0 (K1), where K1 is the critical point for one of the systems and K2 is for

its dual, as detailed around Eq. (17) of reference(11).
Let us next give a few remarks on the comparison with numerics in Table 1.

As is seen there, our conjecture agrees with a number of numerical results but lies
slightly outside error bars for some instances for the square lattice, 0.8907(2) (17)

and 0.8906(2) (18) vs. 0.889972 of our conjecture. A similar situation is observed
for three pairs of mutually dual hierarchical lattices analyzed in(25): The sum of the
values of binary entropy H (p) = −p log2 p − (1 − p) log2(1 − p) for the pair of
mutually dual multicritical points is exactly equal to 1 according to our conjecture,
whereas the numerical results are not precisely unity, 1.0172, 0.9829 and 0.9911.
We have no definite ideas at the present moment where these subtle differences
come from. Further investigations are necessary.

The final remark is on the transition points away from the NL (or the shape
of the phase boundary away from the multicritical point). We expect (but cannot
prove) that the relation x0(K , K p) = x∗

0 (K , K p) gives the true critical point only
on the NL. An important reason is that the limiting behavior of the transition point
as p → 1, derived from the ansatz x0(K , K p) = x∗

0 (K , K p), shows a deviation
from a perturbational result, see (8). The particularly high symmetry of the system
on the NL(27) could be a reason for the success only on the NL.
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